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SUMMARY

An attempt is made to develop a second approximation to the solution
of problems of supersonic flow which can be solved by existing first-
order theory. The method of attack adopted is an iteration process using
the linearized solution as the first step. )

For plane flow it is found that a particular solution of the iter-
ation equation can be written down at once in terms of the first-order
solution. The second-order problem is thereby reduced to an equivalent
first-order problem and can be readily solved. At the surface of a
single body, the solution reduces to the well-known result of Busemann.
The plane case 1s considered in some detail insofar as it gives insight
into the nature of the iteration process.

. Again for axially symmetric flow the problem is reduced to a first-
order problem By the'discovery of a particular solution. For smooth
bodies, the second-order solution can then be calculated by the method
of Kdrmdn and Moore. Bodies with corners are also treated by a slight
modification of the method. The computing time required is several times
that for a careful first-order solution. The second-order solution for
pressures on cones represents a great improvement over the linearized
result. Second-order theory also agrees well with several solutions
calculated by the numerical method of characteristics.

For full three-~dimensionsl flow, only a partial particular solution
has been found. As an exsmple of a more general problem, the solution is
derived for an inclined cone. The possibility of treating other inclined
bodies of revolution and three-dimensional wings is discussed briefly.

INTRODUCTION

As the linearized theory of supersonic flow approaches full develop-
ment, the question arises as to whether more exact approximations are
practical. If viscous effects are large, refinement of the perfect-fluid
solution is useless. Otherwise, however, higher approximstions are known
to yleld a closer approach to reality. In intermediate cases, an improved
solution is desirable in order to assess the relative effects of viscos-
ity and nonlinearity. )
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The prototype of a higher-order solution for supersonic flow is
Busemann's series for the surface pressure in plane flow past a single
body. This simple result is of considerable value in analyzing super-
sonic airfoil sections. Two terms of the series prove sufficient for
almost all requirements; the extension to third and fourth order is
chiefly of academic interest.

The aim of the present study is, therefore, to find a second
approximation, analogous to Busemann's result, for supersonic flow past
bodies which can be treated by existing first-order theory. The natural
method of attack, and apparently the only practical one, is by means of
an iteration process, taking the usual linearized result as the first
step. Several writers have aspplied this procedure to subsonic flow. In
supersonic flow, as usual, the solution is simpler, so that more general
problems can be solved.

This paper is a revised version of a thesis in aeronsutics for the
degree of doctor of philosophy written at the California Institute of
Technology under a National Research Council predoctoral fellowship. It
has been made availeble to the NACA for publication because of its
general interest.

ITERATION PROCEDURE

Basic assumptions.- The problem to be considered is that of steady

three-dimensional supersonic flow of a polytropic gas past one or more
slender bodies, As indicated in the following disgram, the bodies are

0
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"The problem. -

assumed either to be pointed or to extend upstream indefinitely as cylin-
ders parallel to the free-stream direction. In either case, the origin
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of coordinates can be chosen so that all variations in body shape are
confined to the half-space x > 0. Wind axes are introduced, so that
for x S0 the flow is uniform and parallel to the x-axis, with veloc-
ity U and Mach number M. (For definitions of all symbols, see
appendix. ) .

The bodies are slender, which means that at any point the component
of U normal to the surface is small compared with U itself. The
symbol € will be used throughout as a measure of this smallness. Thus
the ordinates of a body will be written as ¢ times a function of order
unity. Used in this way, ¢ serves to distinguish terms of various
orders.

Tt widl be assumed that the full linearized solution to the problem
is available. Then the aim of this investigation is to provide a second
approximation to the exact nonlinear solution. The linearized, or first-
order, solution is defined as the result of keeping only linear pertur-
bation terms in the equation of motion. Similarly, the second-order
solution is the result of retaining products of perturbation quantities.
In addition, however, certain of the triple products are in some cases
found to be as important as one or more double products and are therefore
also retained in the equation. .

It may be noted that the second-order solution will not generally
consist simply of terms of order € and €2, though this is the case
for plane flow., For example, the second-order ﬁplution for flow past a

- body of revolution contains terms as high as € 1og2€.

The flow is assumed to be irrotational and isentropic. This assump-
tion is Justified in the first- and second-order solutions, since the
resulting error is found to be at most of the order of terms neglected
elsevhere,

Exact perturbation equation.- Under the previous assumptions, there

exists a velocity potential Q. In Cartesian coordinates, the equation
of motion is (reference 1, equation (39))

(c2 - nx2)9xx + (c2 - nya)nw + (c2 - nzz)nzz -
20y 0y 7 - 20,085 - 20x0ylyy = O (1)

Here the locel speed of sound c¢ is related to cg, 1ts value in the
uniform stream, by

c2=c°2-7;1(:&2+ny2+922-u2) (2)

where 7 1is the adiabatic exponent. The subscript notation is used to
indicate differentiation.
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A perturbation potential ¢ is now introduced in the usual way.
For convenience, however, & is normalized through division by the free-
stream velocity, so that

=U(x + ) (3)

The perturbation velocity at any point is then the gradient of & malti-
plied by, U.

Introducing the perturbation potential into the equation of motion
gives, after some manipulation,

7 -1 >
Io=(e0y + 0,2 + 02 + 0,2) (0 + Oy + 05,

Yy
Oyy + Pzz ~ BP0yy = MP|20u Oy + OuxOx® + °yy°y2 + 0550,° + (&)
20y, 0.0, + 20,40, (1 + Ox) + 204y (1 + By )0y
L : -

where B = \M® - 1.

Solution by iteration.- The exact perturbation equation (equation (L))
is completely equivalent to the original nonlinear potential equation
(equation (1)). Simplifying essumptions must therefore be introduced in
order to solve it. IPf it is assumed that squares and products of the
derivatives of @ can be neglected, the right-hand side of equation ()
disappears, leaving the wave equation

o) 0y, (D) - Ba‘f’x;:(l) =0 ' C®

This equation is the basis of the linearized or f st-order perturbation
theory, so that its solution is designated by o(1),

More exact solution of equation (4) by means of iteration was first
suggested by Prandtl (reference 2). The procedure has been applied to
plane subsonic flow by GOrtler (reference 3), Hantsche and Wendt (refer-
ences 4 and 5), Imai and Oyama (references 6 and T), and Kaplan (refer-
ences 8 to 10). Schmieden and Kawalki (reference 11) applied it to sub-
sonic flow past an ellipsoid of revolution., Most of these writers have
considered the stream function rather than the potential, which restricts
the method to plane or axially symmetric flows: The procedure is clearly
described by Sauer (reference 1, p. 140) for the case of plane flow.
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\ The linearized solution ¢(l), subject to proper boundary conditions,
is taken as the first approximation. Substituting this known solution
into the right-hand side of equation (%) gives

¢yy(2) szgz) - éa¢xx(2) = Fl(X,Y,Z) (é)

where Fy 1is a known function of the independent variables. This is
again a linear equation, the nonhomogeneous wave equation. A second-
order solution 0 , subject to proper boundary conditions, can be
sought by standard methods. The procedure can be repeated by substi-
tuting ¢(2) into the right-hand side of equation (1) and solving again.
Continuing this process yields a sequence of solutions o(n) which,
under proper conditions, presumably converges to the exact soglution.

This procedure bears a superficial resemblance to the Picard process
for hyperbolic equations in two independent variables (reference 12,
p. 317). There is, however, an essential difference., In the Picard
process, the characteristic lines of the differential equation are known
at the outset, since the functions F, do not depend on the highest-
order derivatives. Here, on the other hand, the characteristic surfaces
(the Mach cones) are initially unknown. Because of the fundamental role
played by the characteristics in the theory of hyperbolic equations (see,
for example, reference 13, ch. II), it might be anticipated that the
characteristics should be revised at each step of the iteration process.
Each step but the first would then involve equations with nonconstant
coefficients. The subsonic counterpart of such a procedure is known to
converge under proper conditions (referemce 12, pp. 288-289).

However, the procedure outlined previously makes no provision for
such revision. At each stage of the iteration process, the equation has
the original characteristics of the undisturbed flow. As a result, the
equation has constant coefficients, which greatly facilitates solution.
Fortunately, it will be found that this procedure nevertheless gives an
improved solution nearly everywhere in the flow field.

Second~order iteration equation.~ Henceforth, only the first two

steps of the iteration process will be comsidered in detail. It is
therefore convenient to regard the second-order solution as consisting
of the first-ozder solution plus a smaller additional term. Also, for

simplicity, will henceforth be replaced by ¢. Then

2@ —g 4o (Ta)
where

¢ = ¢(l)

o = o(2) _ o(1) () .

- - e - —— o - ——— e —emr——— = =
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Now @ = o{1) is a solution of the homogeneous wave equation (equa-
tion (5)), so that substituting into the exact perturbation equation
(equation (4)) shows that ¢, as well as ¢(2), is a solution of the

following second-order iteration equation:
Lo 2(ehy + B2 + B2 + 8,2) (B + Byy + Brg) +
By + Bz - Bomey = M| 2B + B A2+ B B2+ 4,02 (8)

2ByathyBs + 2o + Be) + 2y + Be)ly

Since @ satisfies equation (5), the term (¢xx + Pyy + Pzz) 1in
the right-hand side of equation (8) can be replaced by M2@yy, and the
equation for ¢ becomes

z 5 1 Mz¢xx(2¢x * 3.2 + ¢y2 + ¢22) + 2¢>;x¢x +—

Pyy * Pzz = ﬁa%cx =W ¢1Q:¢x2 + ¢yy¢y2 + ¢zz¢z2 + (9)
2ByaByfz + 2¢zx¢z(1 + %x) + 2¢xy(1 + ¢x)¢y

Here the right-hand side contains not only products of perturbation
quantities but also triple products. The latter can be omitted for plane
flow, since they contribute terms of smaller order (equal to those found
in the next iteration). Otherwise, certain of the triple products should
be retained, since their conmtribution 1s as great as that of one or more
of the double products and greater than any contribution from a third
approximetion. It will be seen later that triple products should be
retained if they involve only derivatives normal to the free stream.
Those which involve x-derivatives can apparently be neglected, so that
the equation becomes

[2 + (7 - l)Mz:l¢xx¢x + 2¢xy¢y + 2058, +
By + Pz - B2, = M2 (10)

BysBy? + 2Byabyls + afs”

Here the triple products which may be important are grouped in the second
line of the right-hand side,.

-’
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The adigbatic exponent 7y will be found to occur alwsys in the
combination

(y + 1)M2

2 (1)

N =

Making this substitution, the second-order iteration equation becomes
finally

2(N - 1)B2PyyfBy + 2B yBy + OB pxfy +

+ Ppy - By, = M2 (12)
P BoB? + ehyafolly + Boafls?

Iteration equation in other coordinates.- In cylindrical coordi-
nates, equation (12) becomes

g , —

2(N - 1)B20fy + 2By + 28xg f‘g *

Prr

+ 30,900 20 1P| Burthi®+ 260 00 ¢r¢9 ¢;¢9 + g0 2 po” (13)

O(¢xx¢x2: ¢Jﬂt¢r2: ¢xx 'g‘gf‘: ¢x6 ¢x¢9 ¢xr¢x¢)

The terms whose form is indicated in the last line are the triple products
which will be found to be negligible.

For conlcal flows it 1s convenient to introduce nonorthogonal conical
coordinates (x,t,0) where

t =B _ (1)

If the body itself 1s conical, -the perturbation potentials are reduced
to functions of two variables by introducing conical perturbation poten-~
tials (reference 14) so that

B(x,t,8) = xa(t,e) . © (15)

with corresponding definitions for 552) and @. The derivatives are
glven by

e L i i et meme e e e T mEm v = = e ene v A —p— ) ~e—— -
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¢x=5_-t5t' Brx -%—B ¢re=BBte ]
b = 6B bor = EBre  Box = Bo - theo | (16)
¢9 = xﬁe ¢66 = xaee . ¢xr = "E;éb' Ett

with the same relations connecting ¢(2) and 5(2) ,and @ and Q.
The iteration equation becomes

-

r — - — - ) h
2(N- l)t2¢tt(¢ - t¢1;) - 2tByfy + ;22(39 - tate)ae +

7 7 2= === —_— y - —
ab 699 Bz¢t‘ﬁ¢t2+ 2 _%' ¢t9¢t¢9 - % ¢t¢92+ _Bb_E ¢99¢92 + |
(l-ta)att+ ¥—+-_2—=M2 i (17)
’ ° [taatt(a - tat) 2’ tzattata: 51-,1;392, r

3_2(5’9 ~ ) (8 - ), PetPe(B- tgt)]

Here the grouping of terms corresponds to that in equation (13).

Boundary conditions.- Physical considerations suggest that the flow
should satisfy the following conditions:

(1) The resultant velocity is tangent to the surface of the body

(2) A1l flow perturbations vanish identically everywhere upstream
of the plane x =0

The theory of hyperbolic differential equations shows that these two
requirements are sufficient to determine the solution. The first imposes.
one condition along the timelike surface of the body, and the second
imposes two conditions on a spacelike surface. This corresponds mgthe-
matically to the case of mixed boundary conditions (reference 12, p. 172)
and leads to a determinate solution (see reference 13, p. 85).

The tangency condition may be written formally as

VRS = 0 (18)
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where 8S(x,y,z) = O is the equation of the surface of the body. In a
more useful form it becomes, for the first- and second-order problems,

B

= Slope (on the surface) (19a)
1+ ¢x .
Pt o _ Slope (on the surface)  (19b)
1+ Py + @y :

Here () means the cross-wind component of the normal derivative of ¢
at the surface of the body. In plane flow or for planar systems ¢c

is @, end in axially symmetric flow @, is @.. The slope of the
body is measured with respect to the free-stream djrection. If the
first-order tangency condition (equation (19a)) is sa.tisfied exactly,
the second-order condition can be simplified to

gi. = Slope (on the surface) (19p*)

Tn linearized theory, the tangency condition (equation (19a)) is
frequently spproximated by neglecting ¢ yx- in comparison with unity. If
the corresponding approximation is made in the second-order problem, the
two tangency conditions become

$c = Slope (on the surface) (20a)

= Slope (on the surface) (20b)

This approximation will not be made except for plane flow, since other-
wise it apparently causes unnecessary loss in accuracy.

A planar system is defined to be a system for which the first-order
tangency condition can be imposed at a plane parallel to the free stream
rather than on the surface of the body (reference 15 » P. 52). Thin flat
wings are planar systems, while slender pointed bodies of revolution are
not. For planar systems the second-order tangency condition can also be
imposed at the plane, provided that the value of ¢y is calculated at
the surface of the body (#y and ¢y may be calculated at the plane).
That is, for planar systems the tangency conditions are

(¢Y)plane = (Sl°Pe)(1 + ¢K)plame (212)

e e m e — - R —
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(ch')plane = (Slope) (1 + ¢x + CPx)P]_ane - (¢Y)Surface (21v)

Corresponding results hold for quasi-cylindrical bodies, which are bodies
of revolution whose radius varies so slightly that the tangency condi-
tions can be imposed at a circular cylinder parallel to the free stream.

The other two boundary conditions are that

#(0,7,2z) + ¢(0,y,z) = 0
(22)
¢x(0:3':z) + CP_X(O,Y,Z) =0
These conditions must be satisfied by the first-order solution alone and

must therefore be satisfied also by the additional second-order potential
alone., Consequently, the conditions are

¢(OJY:Z) =0
2
¢x(0:y':z) = 0_J ( 3a)
¢(0,y,z) = 0
q (23p)
q>x(0,Y,Z) =0 J )

4

Determination of pressure.- When the potential field has been deter-
mined, the net velocity q at any point is given by

@ = (U +u)?+ V2 + wo (24)
where 3 ‘
' %=¢é2)
(2)
. | v 2(2) r @)
0. (2)
g =
u %_%(2)
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in both Cartesian and cylindrical coordinates. Because the flow was
assumed to be isentropic, the pressure coefficient 1s given by

i
_ 1
cp=i o _2 [1+7;1M2(1-12'->]7 -1 . (26)
§90U2 ne ”

where Do and p, are the free-stream pressure and density.

It is the practice in linearized theory also to linearize the pres-
sure relation. Substituting equation (24) into equation (26) and
expanding gives .

u P Ny
b= T u2+M 2

¥ (12 4 2\2 u3 .l ve + w2 ufr® + wA\2  [v2 + +2\3 (27)
T\ ’ueue’Uue"ua

In linearized theory only the first term is ordinarily retained. This
is satisfactory for plane flow or flow past planar systems, since the
contribution of the remaining terms is truly of higher order. In fact,
for plane flow past a single body it happens that the next two terms
cancel identically.

For slender bodies such as a cone, however, orders of maggnitude
are not so clearly distinguished. Busemann suggests (reference 14) that
the second term is then sufficiently large compared with the first that
it should be retained also. This view is supported by Lighthill (refer-
ence 16), who shows that the resulting solution is correct up to the
order of the quantities contributed by the second term. Again, the
third term, which also involves squares of perturbation quantities, is
comparable with the second at high Mach numbers and might logically be
retalned. Having gone this far, it may be simpler to use the exact
relation, )

Each of these four possibllities for the first-order flow past a
59 cone is compared with the exact solution (reference 17) in figure 1.
The series (equation (27)) is seen to alternate in this case., It con-
verges so slowly, however, that linearizing the pressure relation intro- °
duces much greater errors than linearizing only the equation of motion.
Adding each of the quadratic terms in turn causes fluctuations nearly
as great as the error due directly to nonlinearity in the equation.

The point of view to be adopted here is that calculating the veloc-
ities and calculating the pressure are two essentially distinct

U g R M g S . — et —— = = an
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operations. - A certain degree of approximation may be necessary in order
to solve for the velocities, but the pressure relation need not then be
approximated to the same extent simply for the sake of consistency. For
it may happen that the resulting errors (though of the same mathematical
order) are greater than those due to the original epproximation. Indeed,
this is evidently the case in the first-order solution for a cone and
will be found true to a greater extent in the second-order solution.

Mbreovér, in the second-order solution so many terms of equation (27)
must be retained that it is usually simpler to use the exact relation.
For these reasons, the exact pressure equation (equation (26)) will be
used throughout except in the case of plane flow.

PLANE FLOW

The second-order solution for conditions at a single surface in
plane supersonic flow was given by Busemann (references 18 and 19). By
using the ‘iteration procedure, the solution will now be found throughout
the flow field, including the case when several bodies interact.

The solution for plane flow is of interest chiefly insofar as it
serves as a guide in more complicated problems., In particular, it pro-
vides insight into such details of the iteration process as the question
of its success and the effect of sharp corners.

Role of a particular solution.- The second-order iteration equation

can be attacked by standard methods, and in the case of plane flow a
solution can be found directly. For plane and axially symmetric flows,
however, a particular solution of the iteration equation can be written
down at once in terms of the first-order solution. This solves the
problem, because the complete solution consists of a particular solution
plus a solution of the homogeneous equation, and the latter can be
obtained by existing methods. That is, the additional second-order
potential may be written as

) =¥+ X ' (28)
where . - '
¥ any particular solution of nonhomogeneous iteration equation
X a correction potential which is a solution of corresponding

homogeneous weve equation and serves to correct the tangency

condition

The problem for X is the usual first-order problem whose solution is
assumed to be known.
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The role of the particular solution is to transfer the nonhomogeneity
in the problem from the equation, where it is troublesome, to the boundary
conditions, where it can be handled by existing theory. For linear par-
tial differential equations it is always possible in principle to trans-
fer nonhomogeneities in this way from the equation to the boundary condi-
tions, and vice versa, by adding a suitable function to the dependent
varisble (see reference 20, p. 236).

Since the particular solution ¥ will be found in terms of the
first-order solution, it will wvanish upstream of the plane x = 0. Then
the correction potential must also vanish there, so that two boundary
conditions are given by

X(0,y,2) = Xx(o.vY;z) =0 (29)
Fram equation (19b'), the tangency condition for X is found to be

= Slope (on the surface) (30)_

or, in the case of planar systems, from equation (21b)

(Wy + xy)plane = (Slope?(l + Px + Vx + xx)plane - (¢y)surface (31)

It should be noted that, although ¢ is small compared with ¢,
this is not necessarily true of either ¢ or X alomne,

Particular solution for plane flow.- The first-order equation for
plane flow is .

The general solution is
#(x,y) = B(x - By) + J(x + By) (33)

where H and J are functions chosen so as to satisfy the boundary
conditions.

f e W e e g T, e, o - e a, e
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In the iteration equation, all triple products can be neglected,
and equation (12) becomes

Byy - By = ane[(n - )82y + FuyBy] (34)
It can 'be verified directly that a particular solution of this equation
is given by
N N
¥ = M2¢x[( - §)¢ +3 WS}EI (35)

To this must be added a solution X of the homogeneous equation (equa-
tion (32)), which has the form

= h(x - By) + J(x + ﬁy) _ (36)

where hH and J are functions determined. by the second-order boundary
conditions.

For flow past a single boundary (such as one surface of an airfoil)
the first-order potential (equation (33)) contains only one or the other
of the functions H sand J. In this case ¢xy¢y = 2@, #. so that the

iteration equation reduces %o
Py - By = 2Py (37)
The particular solution may then be simplified to

2 gyséxséy - (38)

and the correction potential contains only h or J, according as the
first-order solution contains only H ‘'or dJ.

Flow past a curved wall.- As an example of the application of the
particular solution, consider flow past a wall which at some point
begins to deviate slightly from a plane (see the following figure).
The wall can be represented by

vy = eg(x) ' (39)
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where ¢ is a parameter small compared with’unity and g(x) 1is a
continuous function of order unity which vanishes for xS 0.

/
| /’

l'T_—:J\> y = eg(x)
'/
7//////W// »x

Flow past a curved wall.

This is a planar system, so that the tangency cohditions are given
by equation (21). The approximation of equation (20) can also be made.
Consequently, the first-order problem is

By - BBy = O )

B,(x,0) = eg'(x) } (40)
$(0,y) = gx(0,y) =0
J. .
The solution is .
$=-5 alx - py) (W)

Substituting into the right-hahd side of equation (34) gives the
lteration equation

Byy - By = 2PNe2g! (x - By)a*’ (x - By) (ko)

— v—. e
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According to equations (38) end (36), the solution is
. 2 ) -
o=+ x=-2 2yfgi(x - py)]” + ntx - ) (43)

Imposing the approximate second-order planar tangency condition (equa-
tion (21b)) gives

Bt (x) = 52{2_;3_2@ B (] - s(X)s"(X)} (4)
s0 that
X
B(x) = -¢?{g(x)g" (x) + ‘f(—;‘—p-z-z—’ f [er(e)]® at (45)
. 0

The complete secondrorder-perturbation potential is therefore

2(2) - -g- g(x - By) - e2lg(x - By)e'(x - By) + gifN v[er(x - By)]2 +

x-By
M2(N - 2) a2
TI, e e ' -

The same result can be found by solving equation (42) directly, using
the impulse method (reference 12, p. 164).

On the surface of the wall, the streamwise velocity perturbation
is given by .

2= -'% g'(x) - lﬁzs_;_?_ «2[e'(x)]? (47)

The pressure coefficient at the wall can now be calculated from equa-
tion (27) which, upon replacing N by its value from equation (11),
gives

- b 02
Cp = & ear(x) + 22 ?;T' " et (x)]2 (48)

"This is the well-known result of Busemann (references 18 and 19). To
second order, the surface pressure coefficient depends only upon the

local slope.
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Role of characteristics.- It was pointed out previously that,

because of the underlying significance of the characteristic surfaces
for solutions of hyperbolic equations, it might be expected that the
characteristics would have to be revised successively at each stage of
the iteration. However, an iteration process was chosen which permits
no such revision. It is thereforé pertinent to inguire in this simple
example what role has been played by the original and the revised
characteristics.

Only one of the two families of characteristics will be considered.
The original characteristics of this family are the lines of slope

dy _ 1
=3 (49)

These are the Mach lines of the undisturbed flow which run downstream
Prom the wall (see the preceding diagram) They are also characteristics
of equation (32) in the mathematical sense (reference 12, ch. 5; refer-
ence 13, ch. II).

It can readlily be shown that, if the figst-order streamwise perturba-
tion velocity at any point in g flow is. u then the revised local
values of Mach number and B are given to first order by

(1) = M[l + B2(N - 1)‘1( )] (50a)

g(1) - \/M(l)2 -1= ﬁ[; + M2(N - l)u( )} | (50b)

By using this result together with the first-order solution (equa-
tion (41)), the revised downstream Mach lines are found to have the slope

% = E[ EE-E eg'(x - By):l (51)

These are not the mathematical characteristics of the iteration equa-
tion (equation (42)) for the reason that fractions of the highest-order
derivatives have there been transferred to the right-hand side and
regarded as known. Mathematically, the characteristics continue to be
given by equation (49).

Physically, the characteristics are lines along which discontinu-
ities in wvelocity derivatives are propagated, and this definition is

e e arn me et — - . s wwm—  wmme s e - o e e e -
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completely equivalent to the mathematical one (reference 12, p. 297).
Therefore, in the second-order solution derived above, discontinuities
in acceleration must occur along the original characteristics.

Suppose, however, that no such discontinuities occur. For flow
past a single body the downstream characteristics are also lines along
which the velocity is constant, provided that shock waves do not appear.

Setting

d¢x(2) = Qxx(2) ax + °xy(2) dy = 0
(52)
2) - 2 2 -
doy( ) = °xy( ) ax + ¢yy( )ay=o0
it is seen that the velocity is comstant if
(2) (2)
dy _ _%xx %y (53)

=" 2
dx ¢xy(2) ¢yy( )

For the second approximation (equation (46)) the velocity is constant
along lines of slope . .

av %[1 . e m] (k)

which, according to equation (50b), are the revised characteristics.
Consequently, although the characteristics have not been revised in the
mathematical sense, the solution behaves physically as if they had, so
long as discontinuities do not occur. The question of discontinuities
will be considered in the next section.

The connection between the original and revised characteristics
can be interpreted physically. The right-hand side of the iteration
equation may be regarded-as representing the effect of a known distri-
bution of supersonic sources throughout the flow field. The influence
of this source distribution spreads downstream along both families of
original characteristics. The resulting velocity changes are just such
that the second-order velocities become constant along the revised
rather than the original characteristics.

Finally, it is interesting to note that the second-order potential
is constant on lines which bisect the original and revised character-
istics. For, setting o

a0(2) = 0,(2) ax + 04{2) ay = 0 (55)
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¢(2) is found to be constent along lines of slope

~

%[l + %—i—nl eg'(x - By)] (56)

dy
&

" Flow past a corner and a parabolic bend.- A simple case in which
discontinuities may occur is that of flow past a sharp corner. The exact
gsolution is known to involve an oblique shock wave with attendant veloc-
ity discontinuities for compression and a continuous Prandtl-Meyer fan
for expansion.

Denoting the tangent of the deflection angle by ¢, positive for
compression (see the following figure), the function g(x) appearing

b

. ! ’ L _ .
/777777777 S
Flow past a corner.

in equation (39) is

A
o

0 X
g(x) = (57)

X X

n
o

. From equation (L46) the second-order perturbation potentiasl is found to
be '

o(2)(x,y) = % (x - By) + -;§ (x - By) - ;-f-;’g e (58)
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to the right of the line x = By and zero to the left. Consequently,
in either compression (e > 0) or expansion (€ < 0) the second-order
potential suffers a discontinuous drop along the Mach line from the
corner, of strength proportional to the distance from the corner. Such
a discontinuity cannot be admitted, which indicates that the iteration ,
process fails in this region.

In the case of campression, the solution can be corrected by
analytically continuing the perturbation potential upstream until it can
be joined continuously to the free-stream potential. (This is permis-
sible since the line of discontinuity is not actually a characteristic.)
From the result of equation (56) the juncture is seen to occur along the .
line from the corner which bisects the upstream and downstream Mach
directions, as indicated in the following diagram:

,

Mach lines before-and after adjustment
of potential discontinuity.

The adjusted discontinuity corresponds to a shock wave, for it is known
that an oblique shock bisects the Mach lines to first order (refer-

ence 13, p. 354). In the case of expansion, this type of correction

cannot be Jjustified, since it would involve continuation of.the free-
stream potential across a true characteristic. Instead, a Prandtl~Meyer
fan must be inserted. O

Evidently the iteration process is successful except within an
angular region of order ¢ lying near the Mach line from the corner.
In particular, the pressure is given correctly everywhere on the surface
of the wall. :

—————— = - — . m— = e e——ers
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It is enlightening to observe that the alternstive method of iter-
ation, in which the characteristics are successively revised, fails in
the same region. The potential is double-valued over a fan-shaped region
in the case of compression and is left undefined over a similar region
in the case of expansion (see the following diagram). The same artificial

Second-order flow past a corner using revised characteristics.

corrections are necessary to complete the solution.

Consider next flow past a parabolic bend which is represented by

y=1ed x20- (59)

From equation (46) the second-order perturbation potential is found to
be .

2 .
2(2)(x,y) = -% (x - By)2- IALN_;;%&; €2(x- py)2- g—?ﬂ ¢2y(x- By)2  (60)

The potential and also the velocities are continuous, so that the
previous difficulties do not occur. The acceleration is discontinuous
across the original characteristic x = By, which in this case happens
to be also a revised characteristic, However, a new complication arises.
It is well-known that, in the exact solution for the compressive casge,

- - B T e I i i T -
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the characteristics form an envelope, as shown in the accompanying figure.

LR

First- and second-order flow past a parabolic bend.

Inside the cusp the potential is triple-valued (reference 13, p. 111),
so that a shock wave must be inserted. This envelope must also arise in
the second approximstion, since the characteristics are no longer
parallel. However, the second-order potential given by equation (60)

is single-valued, so that it cannot predict the formation of an envelope.
Again the iteration process fails in a part of the flow field.

It can be seen that the alternative iteration process, using revised
characteristics, will produce an envelope.

Convergence for plene flow.- The examples just considered indicate
that the success of the iteration procedure should be carefully investi-
gated. A step of an iteration process may be considered successful if,
in some sense, it significantly improves the solution. In particular,
one is interested in the success of the second-order solution.

It should be noted that a divergent process may be successful for
many steps and that, on the other hand, convergence does not necessarily
imply suvecess. In practice, however, one would expect a convergent
process to be successful. As used here, success is a subjective notion,
not amensble to analysis. Consequently, only the convergence of the
iteration procedure can be considered in any detail.

Unfortunately, proofs of sufficient conditions for cbnvergence have
not been obtained, even in the case of plane flow. However, the above
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examples suggest certain conjeﬁtures regarding convergence. These will
be stated and some arguments for their plausibility will be advanced.

For flow past a slightly curved plane wall represented by y = €g(x)
the solution obtained by iteration using the revised characteristics is
conjected to converge in any bounded region adjacent to the wall provided
that

(a) € 1is sufficiently small

(p) g(x) is continuously differentiable

If g(x) has only a piecewise continuous derivative, the convergence
holds except possibly in fan-shaped regions springing from each corner,
which lie near the origingl Mach line and subtend an angle of order e.

For the iteration process actually adopted, in which the character-
istics are not revised, the first n steps are conjectured to form part
of a convergent process provided that

(2) € is sufficiently small

(p?) g(x) has continuous derivatives up to (n. -~ 1)st order if
the potentiel is required, nth order if the velocities are required

If condition (b') is satisfied only piecewise, the result holds except
possibly in fan-shaped regions springing from each corner.

In the first case, condition (a) is necessary in order to insure
that the solution be unique, as is clear from the example of the para-
bolic wall. The above examples also show that condition (b) is necessary.

If the sufficiency of these two conditions is assumed, their connec-
tion with condition (b!) in the second case can be illustrated by analogy
with a mathematical model (suggested by Dr. C. R. DePrima) which retains
the essential difference between the two iteration processes -~ namely,
that the correct characteristics are not used in the method actually
adopted. Consider the first-order problem given by equation (40):

¢y‘y"¢xx =0 ]

By(x,0) = eg'(x) > . (61)

¢(O:Y) = ¢x(0:Y) =0 J

where B =1 has been taken for convenience. The solution (equation (41))

was

—— oy e — P e —
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g = -calx - ) \ _' (62)

Now it is attempted to solve this problem using characteristics which
differ from the true characteristics by O0(€). Thus consider the
equivalent problem

¢yy = (1 - E)¢xx = €¢xx
By(x,0) = eg'(x) SR (63)

|
(o]

¢(°:Y) = ¢x(o:yj =

J

and solve by iteration. In the first approximation the right-hand side
can be neglected, so that

Byy = (L - )y =0 (64)
which has the solution, subject to the boundary cond.itions,

¢(l) = -eg(x ~ VI - €y) ‘ (65)

Substituting this into the right-hand side of equation (63) gives the
iteration equation for the second approximation:

Byy = (1 - )y = -%" ' (x -~ VT = ¢&y) (66)

1

Using the impulse method (reference 12, p. 164) gives the solution,
subject to the boundary conditions,

#2) - -eg(x - VI - €y) +%— €2yg' (x, - VI - €y) (67)

But this is just the Taylor series expansion, correct to O 62), of the
true solution (equation (62)). Subsequent iterations add additional terms
40 the expansion. Hence, despite the use of slightly incorrect charac-
teristics, the iteration process converges to the correct solution.

The connection between conditions (b) and (b') is thus seen to be that
the existence of sufficiently many continuous derivatives compensates

for the fact that the wrong characteristics are used. .

i —— . -
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AXTALLY SYMMETRIC FLOW

Before discussing the general solution for bodies of revolution, it
1s convenient to consider the simple problem of a cone., In this case
the second-order solution can be found directly. The results will be
useful in indicating which triple products should be retained in the
general case. ’

Flow past a cone.~- Consider flow past a slender cone of semivertex
angle tan-l¢, as shown in the following diagram:

| /t=1

Flow past a cone,

The flow is conical and axially symmetric, so that the iteration equa-
tion is given by equation (17) with 6-derivatives omitted. Including
the boundary conditions from equations (19a) and (23a), the first-order
problem is j

(1 - ta)att + %= 0

O

BE-[—,(BG) = e'[l + B(pe) - Beat(pe)] (68)

B(=) = Bp(=) =0

e = e = pr m o = - —— ——— = wwmme = s MmSe= - - mam - s tm e e el oy n e Sw——
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Using the integrating factor t/ V1 - t2 » the equation can be integrated
to give the well-known result that

a = -A(sech™1t - Vl - t2) (69)

which is understood to vanish except within the downstreem Mach cone,
vwhere t S 1. The tangency condition is satisfied by putting

A= €2 ('70)

V1 - B22 + ¢2sech™1(Be)

At the Mach cone (%t = 1), all velocity perturbations vanish, so that -
the first-order solution predicts no deflection of the shock wave from
the Mach cone (see reference 13, p. 1403).

Substituting the first-order solution into the iteration equation
(equation (17)) gives

—_— o = . ’ - 2
Q- D + - A2M2|:2 S+2(N-1) \7?—1‘_%2 - B2 _r_‘/ltt] (T1e)

and from equations (19b') and (23b) the corresponding boundary conditions
are

BE(Be) = ¢[P(Be) ~ Bey(pe)] (71p)
P=) = Pg(=) =0 (Tie)

Equation (Tla) cen again be solved using the integrating factor + Vi- 2,
The verious integrals encountered can invariably be treated-by integrating
by parts one or more times. .Using thé second boundary condition, the
complete conical second-order perturbation potential is found to be

%6(2)(t) = -A(sechlt - \1 - t2)+ A2 I}(sech"lt -\1 - té) +

. 3/2
(sech"lt)2 - (N +1) V1 - 2 sechlt - E-iﬁ (L':’_‘%—] +

o [¢6(pecr1)’] (72)
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From equation (16), the streamwise and radial velocity perturbations are

Q- _a sechlt + A2M2E3 sech™1t + sech'1t)2 - (W -1) _____SeCh-lt -
. Lt + =
V 2 |
(W +1) -3 g2 —1—52—1] (73)
1v_, \L-42 2[ V1 - 2 V1 - t2 sech-lt 1
5O AT + APM2 |-B 3 -2 = +(W+1) ¢+

(w - 1) bBechit + T B (2 + tzwl - ta] (73b)

V1 -2

The constant B must be adjusted so as to satisfy the tangency condition,
equation (7T1v). In actual computation it is easier to adjust B numeri-

cally in exactly this fashion rather than to calculate it from the cumber-
some expression which could be written down. The pressure coefficient at

any point can then be calculated from equation (26).

The last term in the bracket in equation (T1la) is the triple
product B2¢tt¢t2 vhich is retained in iteration equation (17). Its

retention is now Jjustified by noting that its contribution - the last
term in equation (72) - is of the same order as other terms near the
‘'surface of the cone (t = Be). Actually, it contributed a second term,
which has been neglected since it is at most of order €6sech' Be. It
can also be verified that the other triple products, whose form is indi-
cated at the end of equation (17), are in fact negligible, since they
contribute at most terms of order ¢6(sech-1B€)2. Consideration of a
further iteration indicates that a third approximation would add terms
no greater than ¢9(sech-1ge)3, which is greater than the terms just
neglected.

The second-order result for surface pressure coefficient is com-
pared in figure 2 with the exact solution (referemce 17) for cones of
59, 10°, 15°, and 20° semivertex angles. Also shown for comparison are
the first-order results based upon the exact expression (equation (26))
for the pressure coefficient., The second-order solution is seen to pro-
vide a much better approximation throughout the range of Mach numbers up
to the point at which the Mach angle equals the cone angle, beyond which
the perturbation solutions have no physical meaning.

R s S ——— - - -~ . ————— i —
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Shock-wave angle.- The solution for plane flow past a corner
suggests that the second-order solution for the cone may fail near the
Mach cone. However, if it is valid there, & first approximation to the
shock-wave deflection and, consequently, the entropy change can be calcu-
lated from the fact that to first order an oblique shock bisects the Mach
‘lines, It was noted before that first-order theory predicts no differ-
ence between the shock position and the Mach cone.

Assume provisionally that the solution is valid at the Mach cone,
while indicating by ? +the possibility that it is not. From equa-
tion (73) the velocity perturbations just behind the Mach cone are

( %)t=l
(%)

80 that the perturbation is normal to the Mach cone. Here A (equa-
tion (70)) has been.approximated by 2. From equation (50b) the cotan~
gent of the revised Mach angle just behind the cone is found to be

(1) L.g[1 - 2!~41'N(N _ 1)ek] (75)

=

—2M2Ne'1"
(T4)

e

opM2Net

The upward stream inclination there is approximately (%)t 1 s 80 that

the Mach lines have the slope _
L1+ et : (16)

Therefore, the slope of the shock wave differs from that of the original
Mach cone by

2 M”Nz _ +4;%2M8 (77)

tan M - =
B

This problem has been treated rigorously by Lighthill (reference 21) and
by Broderick (reference 22), who find that actually

_3(y+u)ad
2 =3 L2t (78)

which is 1%‘- +imes the sbove result. The discrepancy means that the
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second~order solution fails near the Mach cone. It seems remarkﬁble
that the result is in error only to the extent of a constant factor.

The entropy increase through a weak oblique shock wave is propor-
tional to the cube of its inclination away from the Mach lines. Conse-
quently, the entropy rise through the shock wave from a cone is 0(el2) R
as noted by Lighthill (reference 21).

Particular solution for axially symmetric flow.~- Consider flow past
a body of revolution which is either a slender pointed body with nose at
the origin or one which extends indefinitely upstream with constant
radius a for x = 0 (see diagram). The latter shape corresponds to

?
|

P X

N

—> .
. i r = R(x)

Flow past bodies of revolution.

the external flow past a sharp-edged, open-nosed body with supersonic
internal flow. With slight modification the subsequent development can
be applied to internal flow as well. The meridian curve can be repre-
sented in the first case by

r = R(x) = eg(x) x20 (79a)
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and in the second by

a + eg(x) x20

a ) xS0
r = R(x) ={ > ('79p)

Here € 1s again a parameter small compared with unity, and g(x) is
a continuous function of order unity which vanishes for x = 0.

The first-order problem is

Brr + i—r - By = © (80a)
¢r(x,‘R) = R'(x) [1 + By(x,R)] (80b)
#(o,r) = $x(0,r) = 0 (80c)

The solution is known to be (reference 23)

-Br osh~1 %;3
@#(x,r) = - F(£) dt = - F(x ~ Br cosh u) du
b Wx -2 -p22 |,

(81)

The second form is useful for carrying out differentiation, after which
the first form can be restored. The derivatives which will be required

are

osh™1 ﬁ;;b' _ -Br r(e) at
¢x = - F'(x - Br cosh u) du = -~ . sg (82&)
Jo b \/(x - £)2 - p2r2
osh~1 "-%D- _pr |
gr=B F'(x- Br cosh u) cosh u du = 1 (x- E)F'(8) at
S i V(x - §)2- p2r2

0 | ‘ b (82pb)
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With coordinates as shown in the preceding diagrem, the lower limit of
integration b is O for the pointed body and -pa for the semi-
infinite body. The function F(x) msay be interpreted physically as the
strength of a supersonic line source along the x-axis, It is determined
by the tangency condition, equation (80b), which gives the following
integral equation of Volterra type for F':

x-BR(x) x-PR(x)
(x- )P (8) A8 o vmin)2- Fr(€) at (83)

. \(x- £)2 - B2R2(x) . V(x - £)2 - B2R(x)

The second-order iteration equation is found from equation (13) to
be ;

’

T2(N - 1)820, fy + 2Bprfr + |

Prr + 9;_1‘. - BPoyuy = M2 ~¢rr¢r2 + (84)

_O(¢xx¢x2’ adr®s Bl r)_

The solution for the cone suggests that the terms indicated in the last
line are negligible.

It will now be shown that a particular solution of this equation
is given by

¥(x,r) = M2¢x(¢ + Nr¢r)'- ]J;-_M2r¢r3 (85)

The first group of terms contributes the first line in equation (8k4), as
can be verified by direct substitution. The last term in equation (85)
accounts for the term @rrfr° as follows:




32 o ~ NACA TN 2200

(gé'é'"'%g_r" pe %2;2‘)('1]1 r¢r3) = ’¢r(% ¢rr¢r+% 1‘¢rr2+% rPrrrfr +
- l¢r2 3 2 o 3 2
T -5 BPrfxr®- i Berfucrfr .

=¢rﬁzsn¢r-,3; r¢r(¢mQﬁ;£-§g-se¢ng) i

(fr + 2 otr)(Bee + &2 - 620) -
(3 e + B -3 7))

= Frute? - 823 b + e - 3 1r®) (86)

where repeated use is made of the fact that @ satisfies equation (80a).
The last group of terms consists of triple products involving x-derivatives,
vhich have already been neglected in equation (84), so that the result is
proved., :

The correction potential X  is a solution of equation (80) and can
be written as

-] X-b
-Br cosh~1 B

£(&) at

= - £(x - Br cosh u) du (87)
Vix - 92 2622 )

X(x,r) = -

Using equation (82) the second-order tangency condition (equation (19b'))
is found to be’
/
x-BR x-BR
\yr(x,R) + .].-. (x - E,)f’( §) d.E. =R!? \p»x(x’R) - f'(g) d§ (88)

R.b V(x-¢)2- p2g2 | Vix-£)2- p28?

which is again a Volterra integral equation.

Methods of solving integral equation.- Discovery of a particular
ihtegral for bodies of revolution reduces the second-order problem to
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the same form as the first-order problem - namely, the solution of a
Volterra integral equation. Various methods of attacking this problem
are listed by Hayes (reference 15, p. 140).:

An indirect method consists in assuming that the unlmown source
strengths in equations (81) and (87) can be represented by a few terms
of a polynomial, for example, that in equation (81)

F(x) = Cyx + CpX® + . . . + Cpx®@ \ (89)

The resulting solutions were introduced in a more formal manner by Heyes
(reference 15, p. 38), who has discussed their properties in detail. The
first term alone gives the -potential for the conme, equation (69). Addi-
tional terms give the solution for simple families of shapes., However,
the method is not suitable for bodies having discontinuities in slope or
curvature. Consequently, a more direct procedure is desirable,

Kérmdn first introduced an asymptotic solution of the integral equa-
tion (equation (83)) which has come to be known as the slender-body
approximation. For slender bodies, the source strength’ F(x) appearing
in equation (81) is found to be approximately proportional to the rate
of change of cross-sectional area. Thus

F(x) v A= 980K = R(x)R' (x) (0)

where S(x) = nR2(x) is the cross-sectional area of the body. Lighthill
hes shown (reference 16) that if R(x) and its first two derivatives are
of order ¢, and R' is continuous, then this determination of F(x) is
correct to the order of terms retained in the first-ordéer solution. For
purposes of the second-order solution, it can be shown that ' F(x) may be
determined in this way only if R'' is also continuous, This means. that
the body must have continuous curvaeture, which is a severe limitation.
Moreover, the slender-body approximation is found generally to cause
unnecessary loss of accuracy even though the msthematical order estimate
of the error is small., Consequently, this approximation is not to be
recommended if it can be avoided.

The most satisfactory way of solving the integral equations is to
use a step-by-step numerical procedure. In first-order theory the usual
method, introduced by Kdrmgn and Moore (reference 24), is to assume that
the unkmown source distribution can be approximated by a polygonal graph.
This is equivalent to superimposing a number of conical source lines of
different strengths, each shifted downstream with respect to its prede-
cessor, as indicated in the following diagram:
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i =

Equivalence of polygonal source and sum of conical sources.

The letter viewpoint is more convenient for computation. The strengths
of the source lines are determined in successlon by satisfying the
tangency condition at a series of points on the surface of the body.
The details of this procedure are clearly explained in reference 1,

page 7. .

For purposes of a second-order solution, this procedure must be
modified in one respect. The source distribution F(x) must not be
approximated by a polygon unless it dctually has corners. The redason
for this is that a corner corresponds locally to adding a conical source
line, which gives the solution for a cone. But it was found in the case
of the cone that to second order the velocities are discontinuous across
the Mach wave., This would cause fglse pressure Jump in the flow field.

Instead, the procedure must be carried out using source lines of
quadratic strength. The source strength F(x) can then be approximated
smoothly, so that false pressure jumps do not occur. A single source
line of this type represents the flow past a slender pointed body with
a cusped nose (see sketch), as is clear from the slender-body approxi-
mation, equation (90).

. Body formed by source line of quadratic strength.
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Method of solution for smooth bodies,- The second-order solution

will be described first for bodies having continuous slope. Modifica-
tions for treating sharp corners will be discussed in the next section.

The procedure is indicated in the following diagram. The axis is

Method of solution for smooth bodies.

divided into intervels by choosing points with ebscissas £,, at each of
which a source line is to begin. Good accuracy is usually obtained if
the interval length is not greater than B +times the local radius. The
tangency condition will be imposed on the surface of the body at the
points Ppn, which lie on the Mach lines from the points at E&p.

For pointéd. bodies, the first-order solution is started with a
conical source from the origin which gives the proper conical tip. This
potential and the derivetives which are required are

o e e e e ————_— —
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¢o = =Cox SeCh-lt - dl - t2) (¢°)xx =—%Q- _-—F_L_:.l:_t_z-
(fo)x = ~Co sech™1t (Bo)xr = ?;fc_o_ t—_\/f]-.-—_f‘T L (91)
- 2 B2c
(.¢o)r = BCo i]:—T (fo)rr =- xo t_e_\li__l-gtz__j
where -
- Co = 62

\/1 ~ P22 + e2sech-lpe

and the semivertex angle of the conical tip is tan"le. No such term is
required for the semi-infinite body.

The subsequent procedure is {:he same for either body. Quadratic
source lines are started from each of the points £1, £, and so forth,

For the pointed body £ is also at the origin, while for the semi-
infinite body it is at ~Ba. For the nth such source line » the poten-
tial and its derivatives are given by

¢n = -1Cn(x - §n)2[(1 + %Tn?)SGCh-lTn - % \’l - Tnz]

—

(¢n)x = -ZCn(x - En)(sech"l'rn - Vl - Tn2) .
(fn)r = BCn(x - tn) ﬂ_;n_Tn% - Tn SeCh'l"'n)

> (92)
(fn)xx = -2Cp sech~lry

(fn)xr = 2BCn ‘——-,?I—l—

(fn)rr =

|
®
&
B
/-\
-
Hm
+
o]
8
P
R
G

where
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The constants C, are determined successively by imposing the first-

order tangency condition in turn at each of the points Pn. From equa-
tion (80b), the condition is that

n-1
S (fu)r

n-1

1+ :E: (B«

vhere the summation begins with n = O for the pointed body end n = 1
for the semi-infinite body. In this way, values of the complete first-
order potential ¢ and its first and second derivatives are calculated
at each of the points Pp.

= Slope (93)

The velocities due to the particular second-order solution® V- can
then be calculated at the same points., Differentiating equation (85)
glves

Ve = W2 [H( + W) + gl + Wrthr) - 3 oiet?]

L(91)

Yy

(B + 1) + [0+ 08y + ] - A2 + 30}

Finally, the second-order correction potential X is determined by
repeating the procedure used for ¢, finding new constants such that the
second-order tangency condition is satisfied. From equation (19b'), the
condition is that

n-1

Yp + EE: (Xn)r

— = Slope ' (95)

Yy + :E: (Xn)x -

The second derivatives of X need not be calculated.

-

" The complete second-order perturbation velocities are the sums of
the, contributions from ¢, ¥, and X. Then the pressure coefficient can
be calculated at each point P, from equation (26).

The computing time required is several times that for a careful
first-order solution.

R e e A e e i e & g e e | e e o o § %8 —_
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Treatment of bodies with corners.- Suppose that the meridian curve

of the body has a sharp corner, which for convenience may be assumed to
lie on the Mach cone from the origin (see fig.). Then the method of

Body with corner.

solution must be modified for two reasons.

In the first place, the intervals between source lines would have
to be chosen extremely smell in order to obtain an accurate first-order
solution behind the cormer. This difficulty can be eliminated, however,
by adding a new solution which causes a sharp deflection of the stream-
lines., In this way the corner is effectively removed.

Such a solution can be found by approximating to equation (83) in
the vicinity of the Mach cone. The resulting Abel integral equation can
be solved to show that, in general, a potential having discontinuous
nth derivatives results from a source distribution along t]]?e axis which

-—— ——

n
is initially proportional to x 2, getting F(x) = x 2 in equa-
tion (81) gives

x-Br n_1 1 n—l
¢(x,r) = _ 3 2 at = _(x - Br)n (l - §) 2 dg (96)
; W(x - 0)2 - 22 \EBT . \/5(1 +ES0E §)
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This integral represents the analytical continuwation of the hyper-
geometric function, so that, except for a constant factor,

¢(x,r) = (x - Br)n\/— (é) %: n+1, "x_;—ﬁ?) (97)

where a is the radius at the corner. The potential is understood to
vanlsh except within the downstream Mach cone from the origin. The
hypergeometric functions occurring here can all be expressed in terms of
conplete elliptic integrals with real modulus,

The solution for a corner is obtained by taking n = 1. Then

-t o [FEREED - o)

bt

-

T 1 + %

b - 2 E T Rt nsE) - x5 d)]

e = 11 B 2 (B B - 5650
L sy - x5 )
for - £ ik B ) - 2t o]

Here t is the conical variable introduced in equation (14), and
KG = :) and EG n :) are the complete elliptic integrals of the

first and second kinds with.modulus k such that k2 = i = ;G_'

» (98)

|

¢xr=%

LA L
Him
=

From the tangency condition, equation (80b), it can be shown that
the above solution should be multiplied by

(Rp' - By')[1 + (9x)1]

B + Ro!

(99)

Y - — - — B . . —— = —_
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in order to cancel the corner. Here Rj' and- Rp' are the slopes of
the meridian curve just before and after the cormer and (®x); is the
value before the cormer. The first-order solution can then be continued
as described in the previous section. ,

The second difficulty which arises is that,.even though the first-
order solution may be exact, the second-order solution described previ-
ously is incorrect behind the corner. It is clear that the local pres-
' sure jump at a cormer should have the value corresponding to plane flow
past a corner of the same angle. However, the second-order solution
described sbove yields the first-order, rather than the second-order,.
value of the pressure jump. The method of solution must be modified in
order to obtain the correct result.

The proper procedure would be to find the solution for the case when
the corner has been slightly rounded off and then pass to the limit of a
sharp corner. However, the following simpler procedure is found to give
exactly the same result.

The particular solution V¥ calculated from equation (85) is discon- -
tinuous along the Mach wave springing from the corner. If the disconti-
nuity venished at the corner, the solution could subsequently be revised
as in the case of plane flow (sée diagrams of Mach lines in section
"Flow past a corner and a parapolic bend"). However, there is a finite
Jump in V¥ directly at the cormer, which cannot be allowed. Conse-
quently, the correction potential ‘X must involve an equal and opposite
jump. A potential having such a discontinuity is obtained by setting

=0 in equation (97). Then

e 8 L () “

VT ¥

Xx=-%r'%a1]_'t\l:[i;:> <1+t):|
= %l\l—l—t\ll+tE G;ﬁ)‘x(ﬁ)]

Adding a suiteble multiple of this potential cancels the discontinuity
in V. The second-order solution can then be continued as described in
the preceding section. It can be verified that the pressure jump at
the corner has then the correct second-order value.

(100)

v

-

It is instructive to analyze the behavior of a corner from another
viewpoint. It was pointed out before that the right-hand side of the



NACA TN 2200 - n

iteration equation may be considered to represent the effects of a known
distribution of sources throughout the flow field., In the case of a
slightly rounded corner, this source distribution will be weak except
between the Mach lines from the corner. As the corner shrinks to a
point, the source intensity will increase in that region in such & way
that the total strength remains constant. In the 1limit, the source
distribution will behave like a Dirac 5-function slong the Mach line
from the cornmer. The particuler solution for plane flow (equation (35))
takes account of this impulsive function, so that the correct solution
is automatically obtained. In the case of axlially symmetric flow,
however, it is clear that the particular solution given by equation (85)
misses the contribution of the impulse. It is therefore necessary to
correct this shortcoming by adding the step-function potential given by
equation (100).

Comparison with numerical solutions.- The accuracy of the second-

order solution for bodies of revolution can be evaluated by comparison
with examples calculated using the numerical method of characteristics.

The first body to be considered is a 12.5-caliber ogive, which has
a semivertex angle of 16.26° at the tip. The second-order solution was
calculated for this body et a Mach number of 3.24. This represents a
severe test of the method, because the Mach angle 1s then only 10 percent
greater than the tip cone angle. Intervals were chosen such that the
points Pp 1lay at 0.1, 0.25, 0.5, 1, 2, and 3.5 calibers (fig. 3). The
pressure distributions calculated by first- and second-order theory are
compared in figure 3 with the results of various characteristics solu-
tions summarized in reference 25. The second-order solution apparently
coincides with the characteristics solutions to within the accuracy of
the characteristics method.

The second body to be considered consists of a cone of 10° semivertex
angle followed by a circular cylinder. The characteristics solution for
thig body at a Mach number of 2,075 has been .given by Liepmenn and Lapin
" in reference 26. The first- and second-order solutions were calculated
beyond the corner using the modifications discussed in the preceding
section. Figure 4 shows the shape of the body, the location of source
lines, and the velocity distributions caelculated by first-order theory,
second-order theory, and the method of characteristics. Again, the
second-order results agree with the characteristics solution to within
the accuracy of the latter method.

Series expansion with respect to thickness.- An alternative method
of solving the exact perturbation equation (equation (4)) by successive
approximations is to assume that the solution can be expanded in powers
of the thickness parameter €. Thus the exact perturbation potential
is written as .
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_@ (2, (3) 5 (:)eh

‘de+ 02+ ped+ + oo . (102)

Substituting into equation (h) and equating like powers of ¢ yield a
sequence of equations

(1) (1) (1)
Oyy + gz - B2 @y = O

(2) (2) 2(2)
Oy + Oy - BT Dy

(1) (1) (1) (1) (1) (1)] - (103)
Yy

2Mz|:(N-l)B Opye Oy + oxycby+ 0,y O,

Te e o e o o o |

which can be solved in succession. The first is again the usual linear-
ized equation. This method was applied to plane subsonic flow in refer-

ences 4 and 9.

Schmieden and Kawalki first pointed out (reference 11) that the
power series assumed here does not always exist. In general, terms of
the form €%(log €)t begin ;to appear in the third-order solution for
plane flow and in the second-order solution for three-dimensional flow.
This difficulty can be met by assuming a more general series of the form

1) 2 3) (%) (5)
o = (¢ €+ (¢)62 + (o e3 + getfoge + oer+. .. (10%4)

On the basis of this assumption, Broderick has developed & secord-
order solution for supersonic flow past slender pointed bodies of revolu-
tion (reference 27). The analysis is rather lengthy, since the simpli-
fication resulting from the discovery of a particular solution does not
appear. The results are limited to shapes for which the cross-sectional
area is given.by an analytic function, or at any rate possesses continuous
derivatives up to the fourth order. This is a severe limitation since,
for example, the two bodies discussed in the previous section are not
admissible.

Broderick!s result can be obtained by expanding the present second-
order solution in powers of t and log t for small values of +t. The
logarithmic terms arise from the series
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sech-1lt = log I~% - 33—2 . o o (0<t<1) (105)

The expansion will now be carried out for the case of flow past a cone.

It is clear from equation (70) that the constant A in the first-
order solution (equation (69)) is given approximately by

A=¢2+, , . (106)

Substituting this value into equations (73a) and (73b), expanding in
powers of t and 1log %, and imposing the tangency condition, equa-

tion (T1b), shows that

2
m_z__logﬁi+(N+l+2—BlZZ>+... (107)

Then according to equation (73), the velocity perturbations on the sur-
face of the cone are

%: -e2log %-ehi%a(log -2—>2- 211 log -‘%-+M2N+ mi”'—:{|+ e« . (108a)
=¢-edlog 2 4. ., (108b)
Be

Replacing N by its value from equation (11), equation (27) gives for
the pressure coefficient on the surface of the cone

Cp=€2(2 logﬂa—e- )+
hl}ﬁz(bg ﬁe) (5”12 - 1)1°s =+ (7 + 1) = v, T 3w 4 ._]+

[6 log B_e 3] ’ (109)

This is Broderick's result (reference 27, equation (81)).

e e e m e -~ ——— — - ——— v e e = = -m




L4y : NACA TN 2200

This series is compared with the original form of the second-order
solution In figure 5. For the most slender cone, the expansion in series
causes only a moderate loss in accuracy. For more practical thicknesses,
however, the expansion reduces the accuracy to such an extent that for
the cone of 20° semivertex angle, Broderick's golution is inferior to the
first-order result. The reason must be that the -iteration process itself
converges more rapldly than do the subsequent expansions which are
required to reduce it to series form. Hence, terminating all expansions
at terms of the order of those retalned in the iteration process results
in an unnecessary loss of accuracy.

THREE-DIMENSTONAL FLOW

Partisl particular solution.- It might be hoped that & particular
solution, which so greatly simplifies the iteration for plane and axially
symmetric flows, could be found for the general three-dimensional case.
The various methods of existing first-order theory could then be applied -
immediately to the problems of second-order flow past such shapes as
inclined bodles of revolution and three-dimensional wings.

A part of such a particular solution is found at once, being common
to the two special cases. Consider the three-dimensional iteration

equation (equation (12)):

|2 - 1)8%Buxfx + 2BuyPy + 2Poxbz +

- 2 =
Py * Oz P ¢y‘y¢y2 + 2¢yz¢y¢z + ¢zz¢z (110)

It can be readily verified that teking N = O and neglecting the triple
. products in the last line, a particular solgtion is given by

= MoPdy . _ (111)

which appears in both equations (35) and (85).

The iteration equation is thereby reduced to

2B°NPxfx +

gz - BoPy = ’ (112
Fyy * Paz e ¢yy¢y2 + 2¢yz¢y¢z + PzzPz? ‘
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It has not been possible to £ind a particular solution of this equation
in terms of the first-order potential. The solutions for plane and
axially symmetric flow do not appear to suggest a generalization. On
the other hand, there is no assurance that such a solution cannot be
found, so that one is tempted to search further., If the triple products
are neglected, the right-hand side of equation (112) vanishes for

y = -1 (N = 0). However, investigation of the previous solutions indi-
cates that the ldea of here taking 7 = -1 1is not legitimate.

In the absence of a complete particular integral, the reduced iter-
ation equation (equation (112)) must be attacked by more conventional
methods. In principle, it is always possible to find a particular solu-
tion of a linear nonhomogeneous equation with the aid of the fundamental .
solution associated with thé differentiml operator, For the three-
dimensional wave operstor which occurs here, the fundamental solution is

1
Vix - 02 - g2[(y - )2 + (2 - £)2]

(113)

which can be interpreted as the potential at any point (x,y,z) lying
inside the downstream Mach' cone from a unit supersonic source at (&,1,).
With the aid of Green's formula, it can be shown that a particular solu~
tion of

’

Pyy + Ppz = By = F(x,7,2) (114)

is given by

Wx,7,2) =- 5 2(Esn,0) a8 on & (115)
Vix - £)2 - g2[(y - )2 + (z - 0)2] °

where the integration extends throughout that ‘portion of the forward
Mach cone from the point (x,y,z) within wvhich F 1is defined.

In practice, the integration indicated in equation (115) 1s gener-?
ally not feasible, For example, even the simplification of axial symme-
try reduces equation (115) only to a double integral of F(x,r) multi-
plied by a complete elliptic integral of complicated argument. Avoiding
such integrals by disc¢overy of the particular solution clearly represents
a great simplification in this case.l

1Comparing the two methods would lead to the evaluation of definite
integrals involving complete elliptic integrals, which might be of some
interest.

D m e — e e ————
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In the following sectioné, one exsmple of a three-dimensional solu-
tion will be given, and the possibility of treating other shapes will be
discussed thereafter.

Inclined cone.- The problem of a cone at an angle of attack illus-
trates the use of separation of variables to reduce the three-dimensional
iteration equation to tractable form.

Two alternative coordinate systems are suitable for bodies of revo-
lution at an angle of attack. In wind axes the body is inclined, while
in body axes the stream impinges on the body obliquely. The latter
system is simpler for first-order problems and is probably better for
the second-order solution also. However, wind axes will be used here,
since otherwise the iteration equations must be rederived.

To facilitate imposing the” tangency condition, it is convenient to
apply an oblique transformation (see, for example, reference 28, p. 18).
This effectively unyaws the axis of the body (but distorts the surface)
while leaving the wave operator unchanged. Thus three- different

€,X

Coordinate systems for inclined cones. -

coordinate systems are required, as shown in the above sketch:
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Wind axes: X,¥,2

Body axes: €sMs¢ E,P59 E57,9
Oblique axes: X,Y,Z %,R,8 X,T,8
the latter two being used also in cylindrical and conical form.

To simplify the solution, it will be assumed that the angle of
attack a 18 so small that its square can be neglected. This will give
a solution nonlinear in the body thickness but linear in o and will
therefore yield the correct initial slope of the 1ift curve. Then the
three systems of coordinates are related according to the following table:

E=x - ay[x §+c¢:qX=x+a.Bzyx=X-a.BzY§=X-—C(M2YX=§+GM21]

N=y+ax|ly=M-~atl Y=y+ax | y=Y - aX . =X Y=nq

To this approximation

R=p (116a)
M2 _
T=T1-—B--rcccosﬁ (116b)
=213 (116c)
the surface of the cone is
Tg = BE€ (1179-)
T, = Be - pMPe2q cos 3 (117v)

and the velocity components are related by

o = T - Toy ‘ (118a)

®, = Bop + MQ(E - TET)a cos 8 | (118b)

T ——— — . e v A — e e s — e e



L8 ’ _ . NACA TN 2200

¢ roy — -
.E'a. = .Fe - BM2(¢ - Td)T)a. sin © (1180).

where, as in equation (15), the conical potemtial is introduced by

o(X,R,8) = X0(T,8) (119a)

where ’
s BR .
T=% (1290)

The first-order problem, referred to oblique coordinates, is found
to be '

(1 - 1)y + 2+ Po0 | (120a)

te

()

Bfp + M?(E - Tar)a cos © + o cos 8 = ‘e(l +8 - T%r) at T =Tg (120b)
#(=,8) = pr(=,8) = 0 (lZOcl)

The solution is the sum of potentials for a conical line source and
dipole (reference 1, p. T4) and has the form

#(m,8) = -A(sech"lT - \Il - T2) + c(——-—‘h;T2 -7 sech‘lT)u. cos ©

(121)

Substituting into the tangency condition (eguation (120b)) and expressing
values of functions on the cone in terms of their values et T = Be by
means of Taylor expansions, it is found that

A= < (1222)°

Vl - Bzez + ezsech'lﬁe

2
1+ MLt sech’lﬂe)

(1 + 2¢2)\1 - p22 + p2%2gech~lpe

= pe2 (122b)
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The streamwise perturbation velocity is

Pz

(5 - TaT) + BBTU- cos ®
-A sech™1T + (ec + pa) i];—T-z-_m cos © (123)

-

Then according to equation (111), the partial particular solution is, in
conical form,

¥ = %M2¢¢z = MZA{X sech‘lT(sech"'lT - \/:—L-.—Tz) -

[(30 + BA) Vl - Tisech‘lT - (20 + BA) 1l - T2

T
CT(sech"lT)z:la, cos e}
= 71+ §(I10q cos 8 - (124)

There remains to solve the reduced iteration equation given by
equation (112) which, after transformation of coordinates, becomes

(1 - 1 + B+ B0 L@{zn[%zam(a )
BTKIT(3TKI - 2f)a cos e] + saﬁﬂﬁr‘?} (125)
Substituting equation (121) into the right-haz:;d side gives

+ E’T_;ﬁ =AM2{A<2N sech-IT _ g2y Vi@ Tz)-

aj$!

(1 = T2)Pn +
mIIT ]l - III2 Th-'

2[21?((: + BA) ;—e\/%-liz__—lTE + N(2C + pa) %- 2B2AC ‘E ;;2]@ cos e} (126)

e = e r———————— = =
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This is reduced to two total differential equations by setting

. §(1,8) = FI (1) + FII(T)a cos @ (127)

Therefore the complete second-order potential consists of a term indepen-
dent of « plus one proportional to o cos €, The first of these must
be the previous solution for the symmetrical cone (equation. (72)), 80

that E(I) is known. The equation for $(II) is

&5.(11) &(II) -
rp(IT) + 2 A sech™lT
@ - gt + E -5 --2AMz|:2N(C+ﬁA)Te°-T2+
N(2C + BA) %— 282AC ——ﬂl;stjl (128)
Setting
(I (1) = (T (129)

reduces this to a linear first-order equation in ® which can be inte-
grated to find that

I () = AMZ[D<-—-—“1;T2 -T sech"l'l')' + (3C + 2pA)N % +

(c + pa)NT(secnlr)? + % B2AC -—--—JI;;@] (130)

The tangency condition (equation (19b')) separates-into the two
conditions .

B[VT(I) + aT(I):] =€{[‘l_f(1) + 6(1)] - T[?T(I) + aI(I):l} at T = e
(131=)
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p[fa(D) + ] 4 22 {0 4 (0] 1 [ig® arm]} -
G{[;F(II) N 5(11)] _ T[VT(II) ,r'ar(n)] .
6M2T2[F,H(I) + Pl I)]} at T =pe (131b)

The first of these is the previous relation (equation (71b)) which deter-
mined the constant B in equation (T72). Similarly, the second of these
determines the constant D in equation (130).

Series expansions for pressure and normal force.- Numerical results

have been calculated only for the case in which the solution is expanded
in powers of T and log % Carrying out the expansion, the 'constant D

is found to be

21,2 ey _5__) 2
D—[Tlogﬁe (5N 1+2M2 +...]Be (132)

Then calculating the velocity components from equation (118) and the
pressure from equation (27) gives, on the surface of the cone,

Cp = (Cp)o - he[]_ - ez(MQlog EEE - %Ma + l)]or. cos 9 +. . . (133)

Here (cp)o is the value for zero angle of attack, given by equa-

tion (109). Integrating gives the normal-force coefficient » based on
cross-sectional area:

_ Normal force _ 2( 2 2 3.2 ):]
Gy = =21 - ¢e(M*log = -2 + 1) +. .. (13k
N %‘- poU2(Area) [ €pe "2 (134)

-

This result has been obtained also by Lighthill (reference 29), who has
calculated the 1ift on bodies of revolution having analytic meridian
curves by assuming a series expansion for the velocity potential.

Stone (reference 30) has developed a solution for inclined cones
which is linearized with respect to a, but otherwise exact. Xopal
(reference 31) has published tables of the numerical results of Stone's
theory. A comparison of equation (13%) with this exact theory and with
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Tsien's Tirst-order solution (reference 32) is shown in :E'igux"e 6 for 5°
and 10° cones. The earliér discussion of series expansions suggests
that the agreement might improve if the solution were not expanded in
series.

Shock-wave position.- If the solution were valid at the Mach cone,
the velocity components there would be, from equations (12), (118), (1211-),
and (130): .

-) = (U) = e"u2[21v - 3(38 - 1)pa cos 9] (135)

For simplicity, using equation (122), A and C have here been approxi-
mated by €2 and Pe2. Comparing equations (T4) and (T77) it is seen
that the difference between the shock-wave angle and the Mach angle
would He .

A - sin~l % I pvenRet - g- B2MEN(3N - 1)e¥a cos 9 (136)

Hence the ratio of the angular rotation of the shock wave to that of the
cone would be

3 % B2LR(3N - 1)t (137a)

elo

It was seen previously that although the solution does not in fact ’
converge at the Mach cone, the shock-wave deflection calculated in this
way is correct for the unpitched cone except for a factor of 11'- It
might be supposed that the same correction factor would apply here.

* Kopal (reference 31) tabulates.values of 8/a calculated from Stone's
theory, and from these 1t appears that a factor of 3 rather than 1k is

2
required, s0 that actually

8 . 2 pAuN(3W - 1)t . (137b)

-

Figure T shows a compai'ison of this modified result with the exact values
for a 5° cone.

It must be emphasized that equation (137b) represents nothing more
than a conjecture. It could probably be verified, however, by extending
the solution of Lighthill (reference 21) or Broderick (reference 22) to
the case of angle of attack.

o e ——— e e
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GENERAL REMARKS

Future investigation.- Two large classes of problems which have only

been touched upon deserve further study. One of these is wings; the
other, bodies of revolution at an angle of attack. The example of the
inclined cone was undoubtedly made awkward by the use of wind coordinates.
The iteration equation should be rederived in body coordinates and the
solution extended to general bodies of revolution. It is possible that
in this form a particular integral could be discovered. That there is
good possibility of success with this problem is suggested by the fact
that Lighthill was able to obtain a general solution by assuming a

series expansion (reference 29).

The possibility of discovering particular integrels of the iteration
equation might be investigated more systematically. If none can be found
for genersl three-dimensional flow, special cases such as conical flow
should be studied.,

Possible treatment of wings.- Possibly the most useful application
of first-order theory is to thin flat wings. No attempt has so far been
made to find the second-order solution for a wing. It seems likely,
however, that solutions can be found at least for conical problems., In
this case the lteration equation can be reduced, by the standard conical
theory (references 14 and 28), to the problem of solving Poisson's equa-
tion Inside a circle.

Two difficulties can be anticipated. First, if the wing has sub-
sonlic edges, infinite velocities arise there, so that the assumption of
small 'perturbations is violated. It is known that in first-order theory
this is no essential objection, since the pressure is found correctly
except in the immediate neighborhood of the singularity, and the Inte-
grated values of 1ift and moment are correct to first order. Kaplan
(reference 10) and Schmieden and Kawalkl (reference 11) have indicated
that this result extends to the second approximation for subsonic’ flow,
so that probably no real difficulty exists.

Secondly, if the wing has supersonic edges, the failure of the
iteration process along Mach lines from the apex can be expected to
affect the surface pressures. Again it i1s possible that integrated
values will be correct to second order. Otherwise, it may be possible
%o adjust the solution in those regions, in a manner similar to that
shown in the diagram of Mach lines in the section "Flow past a cormer
and a parsbolic bend.” p

Higher approximations.- It seems unlikely that a third or higher

approximation would ever be ,justii'ieti. Other neglected factors, chiefly
viscosity and heat conduction, should certainly be considered first.

e e " nmpr R h ot ————— T —— —
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However, the Busemann second-order result has been extended to third and
even fourth order (reference 33), and various writers have considered
the third approximation for plane subsonic flow (references 5, 7, and 8).
If a third approximation should be considered worth while, the iteration
could be repeated. Again the cases of flow past a curved well and a
cone would serve as helpful examples.

Application to subsonic flow,- The iteration equation and the

particular integrals are in no way restricted to supersonic flow, The
particular solution for plane flow might profitably be compared with the
subsonic solutions of references 4 to 10.

The particular solution for axially symmetric flow makes possible
a second-order solution for bodies of revolution at subsonic speed. In
this case, the integral equation can be treated by the methods used for
the airship problem.

California Imstitute of Technology
Pasadena, Calif., December 9, 1949
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APPENDIX ‘
SYMBOLS

a constant reference radius for body of revolution

b abscissa at which source distribution for body of
revolution begins

A,B,C,D constants determined by bpundary conditions

c local speed of sound

Cn constant coefficients of series

Cp pressure coefficient

E(kz) complete elliptic integrsl of the second kind with
modulus k

£(x),F(x) source-distribution functions for body of revolution

Fn(x,¥,2) known right-hand side of nth-order iteration equation

g(x) continuous function of order unity which vanishes
for xS0

h,j,H,d arbitrary functions of one varisble

K(k2) complete elliptic integral of the first kind with
modulus k

M free-stream Mach number

g+ 1)M2

2p°

P local static pressure

Pn .points on body of revolution at which tangency condition
is imposed )

q local speed of flow

r radius in cylindrical coordingtes

N T —
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R(x)

s(x)

u,v,w

€58

€My ¢
EyPyd
EsTyd
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radius of meridian curve of body of revolution

cross-sectional area of body of revolution

‘ conical varisble (—iﬁ)

perturbation velocity components in Cartesian or cylindrical
coordinates

‘free-stream velocity =

Cartesian coordinates with x i1n free-stream direction
oblique axes (see diagram of coordinate systems in section
entitled "Inclined cone")

angle of attack

adiabatic exponent

angular rotation of shock wave on cone due to angle of
attack

_ parameter small compared with unity

azimuthal variable in.cylindrical coordinates
angle of shock wave from free-stream direction

Cartesian coordinstes of variable point

_ body coordinates (see diagram of coordinate systems in

section entitled "Inclined cone")
local density
conical variable referred to x = ¢ rather than x =0
additional second~order perturbation potential

first- {d)er (1inearized) perturbation potential, same
as ¢\l
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¢ exact perturbation potential
o(n) nth-order perturbation potential

(n)

(o] nth term in series expansion of ?erturbatiOn potential
X second-order correction potential ’
¥ particular solution of second-order iteration equation
' partial particular solution for three-dimensional flow
1] . complete velocity potential
i auxiliary varisble (see equation (129))

( )(n) result of nth iteration
( )(I) independent of © (see equation (127)5
( H(1Im) - proportional to a cos @ (see equation (127))

(—3 ) conical potential; for example, ¢ = x3
Subscripts:

c ' differentiation in cross-stream direction - component of
normal direction which is perpendicular to free stream

o free-stream conditions

s surface of cone

1, 2 values ahead of and behind a corner

[
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